

Journal of Organometallic Chemistry 544 (1997) 225-231

Insertion of GeCl₂ into molybdenum–hydrogen bonds: a convenient route to dichlorogermyl complexes

Alexander C. Filippou *, Johannes G. Winter, Gabriele Kociok-Köhn, Isolde Hinz

Institut für Anorganische und Allgemeine Chemie, Humboldt-Universität zu Berlin, Hessische Str. 1–2, D-10115 Berlin, Germany

Received 3 April 1997

Abstract

Insertion of GeCl₂ into the molybdenum-hydrogen bond of CpMo(CO)₃H (1) affords the dichlorogermyl complex CpMo(CO)₃GeCl₂H (2). Complex 2 reacts with PMe₃ to give *trans*-CpMo(CO)₂(PMe₃)GeCl₂H (5). The mechanism of this ligand exchange reaction involving GeCl₂ extrusion and insertion steps is described. Insertion of GeCl₂ into the molybdenum-hydrogen bond of *cis/trans*-CpMo(CO)₂(PMe₃)H (4) offers an alternative route to complex 5. The dichlorogermyl complexes 2 and 5 are slowly chlorinated by CH₂Cl₂ to give the trichlorogermyl complexes CpMo(CO)₃GeCl₃ (3) and *trans*-CpMo(CO)₂(PMe₃)GeCl₃ (6), respectively. Chlorination of the dichlorogermyl complexes occurs also with GeCl₂(dioxane) in toluene. The crystal structure of 5 is described. © 1997 Elsevier Science S.A.

Keywords: Germanium; Germylene; Molybdenum; Insertion

1. Introduction

Divalent germanium compounds have been the subject of considerable interest in recent years [1]. Among the oldest known stable Ge^{II} derivatives are the dihalides GeX₂ (X = F–I). These compounds have been shown to insert into various σ bonds between maingroup elements providing an easy access to dihalogermanes [2]. In comparison, studies on insertion reactions of germanium dihalides into σ bonds of transition metals are rather limited and those into transition-metal hydrogen bonds to our knowledge are not known [2,3]. This has prompted us to carry out the following work dealing with the insertion reactions of GeCl₂(dioxane) into the Mo–H bond of CpMo(CO)₃H (1) and *cis/trans*-CpMo(CO)₂(PMe₃)H (4).

2. Results and discussion

When the hydrido complex $CpMo(CO)_3H(1)$ [4] was treated with one equivalent of $GeCl_2(dioxane)$ in CH_2Cl_2 at ambient temperature, a fast insertion of $GeCl_2$ into the molybdenum-hydrogen bond of 1 was

0022-328X/97/\$17.00 © 1997 Elsevier Science S.A. All rights reserved. PII \$0022-328X(97)00285-4

observed affording the dichlorogermyl complex $CpMo(CO)_3GeCl_2H$ (2) (Eq. (1)). Evidence for the fast and selective transformation of 1 to 2 was given by the IR spectra of the reaction solutions, which revealed that the two $\nu(CO)$ absorptions of the starting material at 2024 and 1932 cm⁻¹ had been replaced within two hours by those of the product at 2042, 1975 and 1946 cm⁻¹. Complex 2 was isolated as a yellow, air-sensitive, microcrystalline solid in quantitative yield. It is soluble in CH_2Cl_2 and toluene, sparingly soluble in Et_2O and insoluble in pentane and decomposes at 87°C, when heated in a sealed capillary under argon.

When a solution of complex 2 in CH_2Cl_2 was exposed to daylight at ambient temperature, a very slow (ca. 20 days) chlorination of 2 by the solvent occurred

^{*} Corresponding author.

(2)

to give the trichlorogermyl complex $CpMo(CO)_3GeCl_3$ (3) (Eq. (2)). Chlorination of 2 to afford 3 is fast (ca. 0.5 days), if CCl_4 is used as the chlorinating agent. This offers an alternative route to complex 3, which has been previously prepared from $CpMo(CO)_3Cl$ and $GeCl_2(dioxane)$ and characterized by a single-crystal X-ray diffraction study [3]. Complex 2 is also chlorinated by $GeCl_2(dioxane)$ in toluene at ambient temperature to give 3 (Eq. (2)). However, this reaction is slow and therefore not significant in the synthesis of 2 from 1.

The IR spectrum of 2 in CH₂Cl₂ exhibits in the region 2200–1500 cm⁻¹ three ν (CO) absorptions at 2042, 1975 and 1946 cm^{-1} as expected on the basis of group theory for a $M(CO)_3$ fragment of local C_s symmetry in a 'four-legged piano-stool' complex of the type $CpM(CO)_3 X$ (M = Cr, Mo, W; X = neutral, oneelectron donor ligand) [5]. The ν (CO) absorptions of 2 appear at higher wavenumbers than those of 1 (ν (CO) in CH₂Cl₂: 2024 and 1932 cm⁻¹), indicating that insertion of GeCl₂ into the Mo-H bond of 1 reduces the electron density at the metal center and weakens thereby the metal($d\pi$)-CO(π^*) back bonding in 2. In comparison, the $\nu(CO)$ absorptions of 2 appear at lower wavenumbers than those of the trichlorogermyl complex **3** (ν (CO) in CH₂Cl₂: 2051, 1988 and 1965 cm⁻¹) indicating a stronger metal($d\pi$)-CO(π^*) back bonding in 2 than in 3. This suggests that the dichlorogermyl group is a stronger σ -donor ligand than the trichlorogermyl group. Further support for the structure assigned to 2 is given by the ¹H-NMR spectrum, which shows one singlet resonance for the protons of the Cp ligand at δ 4.43 and a singlet resonance for the germanium-bonded proton at δ 7.96. The ¹H chemical shift of the Ge-H group is similar to that of HGeCl₃ ($\delta_{\rm H} = 7.6$) [6]. Finally, the ¹³C-NMR spectrum of **2** in C₆D₆ at 20°C, displays two carbonyl-carbon resonances in an approximate ratio of 2:1 at δ 222.9 and 228.2.

Treatment of 2 with slightly more than one equivalent of PMe₃ in toluene at ambient temperature afforded the CO substitution product *trans*-CpMo(CO)₂(PMe₃)GeCl₂H (5) (Eq. (3)). This was isolated in 79% yield as a yellow, microcrystalline solid that is soluble in CH₂Cl₂ and toluene, but sparingly soluble in Et_2O . Complex 5 is sensitive towards moisture and air and decomposes at 146°C, when heated in a sealed capillary under argon.

those of the analogous dichlorosilyl complex trans- $CpMo(CO)_2(PMe_3)SiCl_2H$, which has been previously obtained from $Li[CpMo(CO)_2(PMe_3)]$ and $HSiCl_3$ [7], and indicate unequivocally the trans-geometry of the dicarbonyl complex. Thus, two $\nu(CO)$ absorptions are observed in the IR spectrum of 5 in CH₂Cl₂ at 1946 and 1873 $\rm cm^{-1}$, the higher frequency (symmetric) CO stretching vibration being less intense than the lower frequency (antisymmetric) CO stretching vibration [8]. The angle 2θ between the two CO ligands has been calculated to be 107.5° using the relationship $I_a/I_s =$ $\tan^2\theta$, where I_a and I_s are the intensities of the absorptions due to the antisymmetric and symmetric C-O stretching modes [8]. The calculated value for the OC-Mo-CO angle of 5 in solution is close to that found in the solid-state $(OC-Mo-CO = 104.6(5)^{\circ})$ (see crystal structure of 5 below). The ν (CO) absorptions of 5 appear at lower wavenumbers than those of trans- $CpMo(CO)_2(PMe_3)GeCl_3$ ($\nu(CO)$ in CH_2Cl_2 : 1965, 1891 cm^{-1} [3], indicating that the dichlorogermyl group is a better σ donor ligand than the trichlorogermyl group (compare also the ν (CO) absorptions of 2 and 3). Additional support for the trans-disposition of the carbonyl ligands in 5 is given by the 13 C-NMR spectrum in C_6D_6 at 20°C, which displays only one resonance for the equivalent carbonyl-carbon nuclei at δ 230.7. This resonance appears as a doublet due to ${}^{13}C-{}^{31}P$ coupling, the size of the coupling constant $(^{2}J(PC) = 26.5)$ Hz) being indicative of a *cis*-disposition of the carbonyl ligands relative to the PMe₃ ligand [3]. Finally, the ¹H-NMR spectrum of **5** in $C_6 D_6$ at 20°C shows besides the expected doublet resonances of the PMe₃ and the Cp ligand protons at δ 0.81 and 4.65, respectively, a singlet resonance for the germanium-bonded hydrogen atom at δ 8.61.

The solid-state structure of 5 was determined by a single-crystal X-ray diffraction study. Suitable crystals were obtained after slow evaporation of a benzene solution of 5 at room temperature. A ZORTEP plot of 5

Fig. 1. ZORTEP plot of the structure of 5 with thermal ellipsoids drawn at the 50% probability level.

with the atom-labeling scheme adopted is shown in Fig. 1. Selected bond lengths and angles are listed in Table 1.

Complex 5 shows the expected square-pyramidal coordination geometry of a 'four-legged piano-stool' complex. The dichlorogermyl and trimethylphosphane ligands are trans positioned as deduced from the IR and NMR spectroscopic data of this compound. All the angles about the molybdenum center are similar to those of trans-CpMo(CO)₂(PMe₃)GeCl₃ (6) [3]. Also the Mo-C(ring), Mo-P and Mo-CO bonds have average lengths of 231.7, 246.4 and 196.9 pm respectively, which are similar to those of $6 ((Mo-C(ring))_{av} = 231.8$ pm; $(Mo-P)_{av} = 247.01$ pm; $(Mo-CO)_{av} = 197.6$ pm). Of specific interest are the structural features of the dichlorogermyl ligand. The Mo-Ge bond of 5 is with 253.1(2) pm shorter than the Mo–Ge single bond of the triphenylgerm yl com plexes $Cp(CO)_{2}Mo(GePh_{3})[C(OEt)Ph]$ (Mo-Ge = 265.8(2) pm) [9] and $Cp(\eta^3 - C_6 H_{11})(NO)MoGePh_3$ (Mo-Ge = 260.4(2) pm) [10] or the Mo-Ge single bond of the germylidyne cluster ^tBuGeMoFeCp(CO)₈H (Mo-Ge =

Table 1

Selected bond lengths (pm) and bond angles (°) with estimated standard deviations for ${\bf 5}$

$\overline{Mo-C(1)}$	230(2)	Ge-Cl(2)	220.8(4)
Mo-C(2)	231(2)	C(6)-Mo-P	77.1(4)
Mo-C(3)	233.4(13)	C(6) - Mo - C(7)	104.6(5)
Mo-C(4)	229(2)	C(6)-Mo-Ge	73.5(4)
Mo-C(5)	235(2)	P-Mo-C(7)	78.4(4)
Mo-C(6)	197.1(14)	P-Mo-Ge	131.98(8)
Mo-C(7)	196.6(13)	C(7)-Mo-Ge	73.5(4)
Mo-P	246.4(3)	Mo-Ge-Cl(1)	114.84(13)
Mo-Ge	253.1(2)	Mo-Ge-Cl(2)	114.8(2)
Ge-Cl(1)	222.8(4)	Cl(1)-Ge-Cl(2)	99.85(14)

255.6(3) pm) [11]. A comparison of the structural parameters of the trichlorogermyl ligand in trans- $CpMo(CO)_2(PMe_3)GeCl_3$ (6) [3] with those of the dichlorogermyl ligand in 5 reveals that substitution of a chloro substituent by a hydrogen atom causes an elongation of the Mo-Ge bond (6: $(Mo-Ge)_{av} = 250.57$ pm; 5: Mo-Ge = 253.1(2) pm), an elongation of the Ge-Cl bonds (6: $(Ge-Cl)_{av} = 219.3 \text{ pm}; 5: (Ge-Cl)_{av} = 221.8$ pm) and a reduction of the Mo-Ge-Cl bond angles (6: $(Mo-Ge-Cl)_{av} = 118.41^{\circ}; 5: (Mo-Ge-Cl)_{av} = 114.8^{\circ}).$ The same trends have been observed, when in GeX_4 (X = F, Cl) the halogen atoms were successively substituted by more electropositive substituents such as hydrogen or methyl groups and have been explained with the changes in bond polarities using either the hybrid atomic orbital model or the valence-shell electron pair repulsion model [12].

IR monitoring of the reaction of 2 with PMe_3 in toluene to give 5 revealed the formation of two intermediates, which on the basis of their $\nu(CO)$ absorptions were identified to be 1 (ν (CO) in toluene: 2023 and 1933 cm⁻¹) and $cis/trans-CpMo(CO)_2(PMe_2)H$ (4) (ν (CO) in toluene: 1934 and 1853 cm⁻¹). This indicates a more complicated mechanism than one might anticipate for a CO/PMe₃ substitution reaction involving GeCl₂ extrusion and insertion steps. We suggest that in the first step PMe₃ adds to the electrophilic germanium center of 2. This is followed by the extrusion of GeCl₂ probably as PMe₃GeCl₂ to give $CpMo(CO)_{3}H$ (1). In fact, phosphane adducts of $GeCl_{2}$ such as PPh₃GeCl₂ and P(^tBu)₃GeCl₂ have been described in the literature [13]. Complex 1 then reacts with PMe₃ to afford cis/trans-CpMo(CO)₂(PMe₃)H (4) [14], which finally inserts GeCl₂ into the Mo-H bond to give complex 5. In a control experiment cis / transCpMo(CO)₂(PMe₃)H (4) was demonstrated to insert rapidly GeCl₂ into the Mo-H bond to afford selectively 5 (Eq. (4)). This gives additional support for the suggested pathway for the reaction of 2 with PMe₃.

Like 2, complex 5 is slowly (ca. 20 days) chlorinated by CH₂Cl₂, when exposed to daylight, to give the trichlorogerm yl com plex trans- $CpMo(CO)_2(PMe_3)GeCl_3$ (6). This conversion becomes considerably faster (ca. 6 h), if CCl_4 is used as chlorinating agent (Eq. (5)) and offers an alternative route to complex 6, which has been previously obtained by the isomerization of cis-CpMo(CO)₂(PMe₃)GeCl₃, the latter complex resulting from the insertion reaction of GeCl₂ into the Mo–Cl bond of cis-CpMo(CO)₂- $(PMe_3)Cl$ [3]. However, complex 5 differs from 2 that it reacts rapidly with GeCl₂(dioxane) in toluene at ambient temperature to afford 6 (Eq. (5)). This was demonstrated by a control experiment, showing that addition of 1.5 equivalents of GeCl₂(dioxane) to a toluene solution of 5 resulted in the complete conversion to 6 within 1.5 h. Therefore a stoichiometric amount of GeCl₂(dioxane) should be used in the synthesis of 5 from 4 (Eq. (4)). Otherwise the product is contaminated to a variable extent with 6.

3. Conclusion

Insertion of $GeCl_2$ into the Mo-H bond of $CpMo(CO)_2(L)H (L = CO, PMe_3)$ provides a high-yield and fast route to dichlorogermyl complexes (metallo-

dichlorogermanes). These compounds are of particular interest, because these might be useful starting materials for the synthesis of metallated germylenes after dehydrohalogenation, and could be also employed in organic synthesis as $GeCl_2$ transfer reagents.

4. Experimental

Standard inert-atmosphere techniques were used for all syntheses and sample manipulations. The solvents were dried by standard methods (pentane over CaH₂, Et₂O and toluene over Na/benzophenone, CH₂Cl₂ over P₂O₅ and Na/Pb alloy), distilled under argon and stored over 4-Å molecular sieves prior to use.

Elemental analyses were obtained from the Zentrale Analytische Gruppe des Instituts für Chemie der Humboldt-Universität zu Berlin. IR spectra were recorded on a Bruker IFS-55 spectrometer in CH_2Cl_2 or toluene using a CaF_2 cell. ¹H-, ¹³C{¹H}- and ³¹P{¹H}-NMR spectra were recorded on a Bruker AM-300 spectrometer in dry deoxygenated methylene- d_2 -chloride or benzene- d_6 at 20°C. The ¹H- and ¹³C{¹H}-NMR spectra were calibrated against the solvent signals (methylene d_2 -chloride, $\delta_{\rm H}$ 5.32 and $\delta_{\rm C}$ 53.8 ppm; benzene- d_6 , $\delta_{\rm H}$ 7.15 and $\delta_{\rm C}$ 128.0 ppm) and the ³¹P{¹H}-NMR spectra against an external 85% H₃PO₄ aqueous solution. Mass spectra were obtained with a Hewlett Packard 5995A spectrometer; m/z values are given relative to the ⁹⁸Mo, ⁷⁴Ge and ³⁵Cl isotopes. Melting points were determined using a Büchi 530 melting point apparatus and are not corrected. The samples were sealed in capillary tubes under argon and heated with a rate of 1 K/min.

The complexes $CpMo(CO)_3H$ (1) and *cis/trans*-CpMo(CO)₂(PMe₃)H (4) were obtained according to published procedures [4,14]. GeCl₂(dioxane) and PMe₃ were prepared following the procedures reported by O.M. Nefedov and H. Schmidbaur, respectively [15,16].

4.1. $CpMo(CO)_3GeCl_2H(2)$

A mixture of 1.11 g (4.51 mmol) of **1** and 1.05 g (4.53 mmol) of $\text{GeCl}_2(\text{dioxane})$ was suspended in 50 ml of CH_2Cl_2 at ambient temperature and stirred for 2 h. During this time the colour of the solution changed from orange to bright yellow. Completion of the reaction was revealed by IR spectroscopy. The solution was then filtered from some insoluble brown material through a filter canula and the filtrate was evaporated to dryness. The residue was washed twice with 10 ml of pentane to afford **2** as a yellow, microcrystalline solid. Yield: 1.74 g (99% referring to 1). M.p.: 87°C (dec.). Anal. Found: C, 24.39; H, 1.59; Cl, 18.82%. Calcd. for $C_8H_6Cl_2\text{GeMOO}_3$ (389.59): C, 24.66; H, 1.55; Cl,

18.20%. IR (toluene, cm⁻¹): 2038 s, 2030 m, 1969 s, 1946 vs [ν (CO)]; IR (CH₂Cl₂, cm⁻¹): 2042 s, 1975 s, 1946 vs [ν (CO)]. ¹H-NMR (300 MHz, C₆D₆): δ (ppm) = 4.43 (s, 5H, η^{5} -C₅H₅), 7.96 (s, 1H, GeCl₂H). ¹³C{¹H}-NMR (75.5 MHz, C₆D₆): δ (ppm) = 92.6 (η^{5} -C₅H₅), 222.9 (2 × CO), 228.2 (1 × CO). EI-MS (70 eV): m/z 392 ([M]⁺), 364 ([M-CO]⁺), 336 ([M-2 CO]⁺), 328 ([M-HCl-CO]⁺), 308 ([M-3 CO]⁺), 272 ([M-HCl-3 CO]⁺), 198 ([M-HCl-3 CO-Ge]⁺), 163 ([M-HCl-3 CO-Ge-Cl]⁺).

4.2. $CpMo(CO)_3GeCl_3$ (3) upon chlorination of CH_2Cl_2

80 mg (0.21 mmol) of complex 2 were dissolved in 5ml of CH_2Cl_2 and the solution was exposed to daylight for several days. The reaction was monitored by IR spectroscopy. Completion of the reaction after ca. 20 days was indicated by the replacement of the $\nu(CO)$ absorptions of 2 at 2042, 1975 and 1946 cm^{-1} by those of complex 3 at 2051, 1988 and 1965 cm^{-1} . The slight cloudy solution was then filtered through a filter canula and the filtrate was evaporated to dryness. The residue was washed twice with 10 ml of pentane to afford 3 as a yellow solid. IR (CH₂Cl₂, cm⁻¹): 2051 s, 1988 m, 1965 vs [ν (CO)]. ¹H-NMR (300 MHz, C₆D₆): δ (ppm) = 4.34 (s, 5H, η^5 -C₅H₅). ¹³C{¹H}-NMR (75.5 MHz, C_6D_6): δ (ppm) = 92.7 (η^5 - C_5H_5), 222.6 (2 × CO), 227.1 (1 × CO). Furthermore the ¹H spectrum of the product was measured in CD2Cl2 at 20°C and was found to be identical with those of an analytically pure sample of **3** prepared from $CpMo(CO)_3Cl$ and GeCl₂(dioxane) [3].

4.3. trans- $CpMo(CO)_2(PMe_3)GeCl_2H$ (5) from 2 and PMe_3

A yellow solution of 192 mg (0.49 mmol) of 2 in 30 ml of toluene was treated at room temperature with 61 μ l (0.59 mmol) of PMe₃ and stirred for 12 h. During this time the solution slightly brightened and evolution of gas (CO) was observed. Completion of the reaction was confirmed by IR spectroscopy. The solution was then filtered through a filter cannula and the filtrate was evaporated to dryness. The residue was washed twice with 10 ml of pentane to afford complex 5 as a bright yellow, microcrystalline solid. Yield: 170 mg (79% referring to 2). M.p.: 146°C (dec.). Anal. Found: C, 27.83; H, 3.54; Cl, 17.26%. Calcd. for C₁₀H₁₅Cl₂GeMoO₂P (437.66): C, 27.44; H, 3.45; Cl, 16.20%. IR $(CH_2Cl_2, cm^{-1}) = 1946 \text{ m}, 1873 \text{ s} [\nu(CO)].$ IR (toluene, cm⁻¹): 1944 m, 1873 s [ν (CO)]. ¹H-NMR (300 MHz, C_6D_6): δ (ppm) = 0.81 (d, ²J(PH) = 9.6 Hz, 9H, $(P(CH_3)_3)$, 4.65 (d, ${}^{3}J(PH) = 1.0$ Hz, 5H, η^{5} -C₅H₅), 8.61 (s, 1H, GeCl₂H). ¹³C{¹H}-NMR (75.5 MHz, C₆D₆): δ (ppm) = 20.1 (d, ¹J(PC) = 32.5 Hz, $(P(CH_3)_3)$, 91.3 $(\eta^5 - C_5H_5)$, 230.7 $(d, {}^2J(PC) = 26.5)$ Hz, 2×CO). ³¹P{¹H}-NMR (121.5 MHz, C₆D₆): δ (ppm) = 18.96. EI-MS (70 eV): m/z 440 ([M]⁺), 412 ([M-CO]⁺), 404 ([M-HCl]⁺), 384 ([M-2 CO]⁺).

4.4. $trans-CpMo(CO)_2(PMe_3)GeCl_2H$ (5) from cis/ trans-CpMo(CO)_2(PMe_3)H (4) and GeCl_2(dioxane)

Following the procedure described above for the synthesis of 2, complex 5 was obtained as a yellow, microcrystalline solid after treatment of 250 mg (0.85 mmol) of 4 with 195 mg (0.84 mmol) of GeCl₂(dioxane) in CH₂Cl₂. Yield: 282 mg (76% referring to 4). The IR, ¹H- and ³¹P-NMR spectra of the product were identical with those of an analytically pure sample of 5 obtained from 2 and PMe₃ as described above.

4.5. $trans-CpMo(CO)_2(PMe_3)GeCl_3$ (6) upon chlorination of 5 with CH_2Cl_2

280 mg (0.64 mmol) of 5 were dissolved in 30 ml of CH_2Cl_2 and the solution was exposed to daylight for ca. 20 days. The reaction was monitored by IR spectroscopy. Completion of the reaction was indicated by the replacement of the ν (CO) absorptions of 5 at 1946 and 1873 cm^{-1} by those of the product 6 at 1965 and 1891 cm⁻¹. The solution then was filtered through a filter canula and the filtrate was evaporated to dryness. The residue was washed three times with 10 ml of pentane to give complex 6 as a yellow solid. Yield: 280 mg (93% referring to 4). IR (CH₂Cl₂, cm⁻¹): 1965 m, 1891 s [ν (CO)]. ¹H-NMR (300 MHz, C₆D₆): δ (ppm) $= 0.69 \text{ (d, }^{2}J(\text{PH}) = 9.6 \text{ Hz}, 9\text{H}, (\text{P(C}H_{3})_{3}), 4.52 \text{ (d,}$ ${}^{3}J(PH) = 0.9$ Hz, 5H, η^{5} -C₅H₅). ${}^{13}C{}^{1}H{}^{3}$ -NMR (75.5 MHz, C₆D₆): δ (ppm) = 19.7 (d, ${}^{1}J(PC) = 33.1$ Hz, $(P(CH_3)_3)$, 91.3 $(\eta^5 - C_5H_5)$, 231.2 $(d, {}^2J(PC) = 27.5$ Hz, 2 × CO). ³¹P{¹H}-NMR (121.5 MHz, $C_{16}D_6$): δ (ppm) = 16.96. Furthermore the ¹H- and ³¹P-NMR spectra of the product were measured in CD₂Cl₂ at 20°C and were found to be identical with those of an analytically pure sample of 6 prepared by isomerization of cis-CpMo(CO)₂(PMe₃)GeCl₃ [3].

4.6. Crystal structure determination of 5

A summary of the crystal data, data collection and refinement for 5 is given in Table 2.

Data collection was performed on a STOE STADI4 four circle diffractometer at ambient temperature and with graphite monochromated MoK_{α} radiation ($\lambda =$ 0.71073 Å). Lattice parameters were determined from the setting angles of 28 reflections in the range of $25.4^{\circ} \le 2\Theta \le 36.4^{\circ}$. Data were collected in the $\overline{\omega} - 2\Theta$ scan mode. After every 2 h three standard reflections were monitored and the crystal reoriented in case of deviation between 0.1° and 0.15°. Intensity data were corrected for Lorentz and polarization effects and ab-

Table 2 Summary of crystallographic data for complex 5

	5		
Empirical formula	C ₁₀ H ₁₅ Cl ₂ GeMoO ₂ P		
Molecular weight	437.64		
Crystal color	orange-yellow		
Crystal size (mm)	$0.42 \times 0.26 \times 0.08$		
Crystal system	orthorhombic		
Space group	P2 ₁ 2 ₁ 2 ₁ (No. 19)		
a (Å)	9.7386(11)		
b (Å)	12.6633(11)		
<i>c</i> (Å)	12.935(2)		
V (Å ³)	1595.2(3)		
Ζ	4		
$\rho_{\rm calcd.}$ (g/cm ³)	1.822		
$\mu_{MoK\alpha}(\mathrm{mm}^{-1})$	2.959		
F(000)	856		
20 min./max. (°)	3, 48		
hkl range	- 10, 11/0, 14/0, 14		
Total data	2921		
Data unique (I > 2 σ I)	2487		
Min./max. density (eÅ ⁻³)	0.588/-0.389		
No. of parameters refined	158		
Absorption corr.	Ψ-scan		
Min./max.	0.380/0.556		
$R_1^{a} [I > 2\sigma(I)]$	0.0523		
wR ₂ ^b	0.1251		
GOF ^c	1.032		

^a $R_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|.$ ^b $wR_2 = [\Sigma [w(F_0^2 - F_c^{2})^2] / \Sigma [w(F_0^2)^2]]^{1/2}.$ ^c $GOF = S = [\Sigma [w(F_0^2 - F_c^{2})^2] / (n-p)]^{1/2}.$

sorption. The input file for the SHELX programs was prepared with the program UTILITY [17]. Structure solution was performed with the Patterson method (SHELXS-86) [18] and subsequent difference-fourier

Table 3 Atomic coordinates $(\times 10^4)$ and equivalent isotropic displacement parameters ($pm^2 \times 10^7$) for 5

Atom	x	у	z	U _{eq} ^a
Mo	8803(1)	1556(2)	7671(1)	41(1)
C(1)	10351(28)	916(16)	8857(16)	109(8)
C(2)	10669(17)	1964(15)	8704(12)	77(5)
C(3)	9569(22)	2520(12)	9096(12)	80(5)
C(4)	8619(20)	1848(24)	9411(13)	112(8)
C(5)	9076(36)	853(20)	9340(15)	136(12)
C(6)	8376(13)	2750(10)	6748(11)	55(3)
O(1)	8131(10)	3498(8)	6252(8)	80(3)
C(7)	8396(13)	291(10)	6843(10)	55(3)
O(2)	8152(11)	-471(7)	6392(9)	79(3)
Р	6273(3)	1570(3)	7649(2)	53(1)
C(8)	5462(17)	2785(12)	8062(12)	81(5)
C(9)	5450(16)	593(13)	8493(14)	84(5)
C(10)	5503(14)	1309(14)	6417(12)	81(5)
Ge	10563(1)	1508(1)	6232(1)	54(1)
CI(1)	12042(4)	2851(3)	6231(3)	72(1)
Cl(2)	12015(4)	171(3)	6308(5)	106(2)

^a $U_{\rm eq}$ is defined as one-third of the trace of the orthogonalized U_{ij} tensor.

synthesis (SHELXL-93) [19]. Refinement on F^2 was carried out by full-matrix least-squares techniques (SHELXL-93). Non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were included using a riding model with d(C-H) = 0.96 Å and $U_{iso} = 0.08 \text{ Å}^2$. Neutral atom scattering factors were taken from Cromer and Mann [20]. Geometrical illustrations were performed with ZORTEP [21]. Complex 5 crystallizes in the non-centrosymmetric space group $P2_12_12_1$ and could be favourably refined as racemic twin with both individuals in the ratio of 0.47/0.53. The H-atom connected to the Ge-atom was found in the difference-fourier map and was isotropically refined with $U_{\rm iso} = 0.08 \text{ Å}^2$.

Final positional and equivalent isotropic thermal parameters for 5 are given in Table 3.

Crystallographic data (excluding structure factors) for 5 have been deposited with the Cambridge Crystallographic Data Center. Copies of the data can be obtained free of charge on application to The Director. CCDC, 12 Union Road, Cambridge CB2 1EZ, UK + 441223 336033; (fax: e-mail: teched@Chemcrys.cam.ac.uk).

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support, the company Chemetall GmbH for a donation of germanium powder, Dr. U. Hartmann and U. Kursawe for the elemental analyses and Dr. M. von Löwis and A. Woyda for recording the mass spectra.

References

- [1] (a) P. Rivière, M. Rivière-Baudet, J. Satgé, in: G. Wilkinson, F.G.A. Stone, E.W. Abel (Eds.), Comprehensive Organometallic Chemistry, Vol. 2, Pergamon, Oxford, 1982, p. 399. (b) W. Petz, Chem. Rev. 86 (1986) 1019. (c) P. Jutzi, Adv. Organomet. Chem. 26 (1986) 217. (d) M. Veith, Angew. Chem. 99 (1987) 1; Angew. Chem. Int. Ed. Engl. 26 (1987) 1. (e) M.F. Lappert, R.S. Rowe, Coord. Chem. Rev. 100 (1990) 267. (f) W.P. Neumann, Chem. Rev. 91 (1991) 311. (g) M. Driess, H. Grützmacher, Angew. Chem. 108 (1996) 900; Angew. Chem. Int. Ed. Engl. 35 (1996) 828.
- [2] (a) J. Satgé, M. Massol, P. Rivière, J. Organomet. Chem. 56 (1973) 1. (b) J. Satgé, Pure Appl. Chem. 56 (1984) 137.
- [3] A.C. Filippou, J.G. Winter, G. Kociok-Köhn, I. Hinz, J. Organomet. Chem. submitted for publication.
- R.B. King, F.G.A. Stone, Inorg. Synth. 7 (1963) 99.
- [5] I.-P. Lorenz, Gruppentheorie und Molekülsymmetrie, Attempto, 1992.
- [6] O.M. Nefedov, S.P. Kolesnikov, W.I. Schejtschenko, Angew. Chem. 76 (1964) 498; Angew. Chem. Int. Ed. Engl. 3 (1964) 508
- [7] W. Malisch, R. Lankat, S. Schmitzer, R. Pikl, U. Posset, W. Kiefer, Organometallics 14 (1995) 5622.

- [8] (a) A.R. Manning, J. Chem. Soc. A (1967) 1984. (b) R.B. King, R.H. Reimann, D.J. Darensbourg, J. Organomet. Chem. 93 (1975) C23. (c) D.L. Beach, K.W. Barnett, ibid. 97 (1975) C27. (d) D.L. Beach, M. Dattilo, K.W. Barnett, ibid. 140 (1977) 47. (e) R.B. King, R.H. Reimann, Inorg. Chem. 15 (1976) 183.
- [9] L.Y.Y. Chan, W.K. Dean, W.A.G. Graham, Inorg. Chem. 16 (1977) 1067.
- [10] F. Carré, E. Colomer, R.J.P. Corriu, A. Vioux, Organometallics 3 (1984) 970.
- [11] P. Gusbeth, H. Vahrenkamp, Chem. Ber. 118 (1985) 1770.
- [12] (a) J.E. Drake, R.T. Hemmings, J.L. Hencher, F.M. Mustoe, Q. Shen, J. Chem. Soc. Dalton Trans. (1976) 394 and references cited therein. (b) J.E. Drake, J.L. Hencher, Q. Shen, Can. J. Chem. 55 (1977) 1104.
- [13] W.-W. du Mont, B. Neudert, G. Rudolph, H. Schumann, Angew. Chem. 88 (1976) 303. Angew. Chem. Int. Ed. Engl. 15 (1976) 308.
- [14] H.G. Alt, H.E. Engelhardt, W. Kläui, A. Müller, J. Organomet. Chem. 331 (1987) 317.

- [15] (a) S.P. Kolesnikov, I.S. Rogozhin, O.M. Nefedov, Izv. Akad. Nauk. SSSR, Ser. Khim. 10 (1974) 2379. (b) S.P. Kolesnikov, I.S. Rogozhin, O.M. Nefedov, Chem. Abstr. 82 (1975) 25328u.
- [16] (a) W. Wolfsberger, H. Schmidbaur, Synth. React. Inorg. Met.-Org. Chem. 4 (1974) 149. (b) M.L. Lütkens Jr., A.P. Sattelberger, H.H. Murray, J.D. Basil, J.P. Fackler Jr., Inorg. Synth. 26 (1989) 7.
- [17] J. Pickardt, UTILITY, Technische Universität Berlin, Germany, 1994.
- [18] G.M. Sheldrick, SHELXS-86, Program for Crystal Structure Solution, Universität Göttingen, Germany, 1986.
- [19] G.M. Sheldrick, SHELXL-93, Program for Crystal Structure Determination, Universität Göttingen, FRG, 1993.
- [20] D.T. Cromer, J.B. Mann, Acta Crystallogr. A 24 (1968) 321.
- [21] L. Zsolnai, H. Pritzkow, ZORTEP, ORTEP program for PC, Universität Heidelberg, 1994.